8.1 Referencia rápida de las librerías PyPBLAS

 NIVEL 1 $ x \longleftrightarrow y $x,y= pvswap(x,y) $ \alpha x \to x$x= pvscal(alpha,x)$ x \to y $y= pvcopy(x) $ \alpha x + y \to y$y= pvaxpy(alpha,x,y)$ x^T y \to y$dot= pvdot(x,y)$ x^T y \to y$dot= pvdotu(x,y)$ x^H y \to y$dot= pvdotc(x,y) $ \Vert x\Vert _{2} \to y$nrm2= pvnrm2(x) $ \Vert re(x)\Vert _{2} + \Vert img(x)\Vert _{2} \to asum$asum= pvasum(x) $ 1^{st} k \owns \vert re(x_{k})\vert + \vert img(x_{k})\vert \to indx$ amax,indx= pvamax(x) $ max{\vert re(x_{i})\vert + \vert img(x_{i})\vert} \to amax$   NIVEL 2 $\alpha\cdot op(A) \cdot x + \beta \cdot y \to y$y= pvgemv(alpha,a,x,beta,y[,trans]) $\alpha\cdot A \cdot x + \beta \cdot y \to y$y= pvhemv(alpha,a,x,beta,y[,uplo]) $\alpha\cdot A \cdot x + \beta \cdot y \to y$y= pvsymv(alpha,a,x,beta,y) $A \cdot x \to x ; A^T \cdot x \to x; A^H \cdot x \to x$x= pvtrmv(a,x,[uplo,trans,diag] $A^{-1} \cdot x \to x ; A^{-T} \cdot x \to x; A^{-H} \cdot x \to x$x= pvtrsv(a,x,[uplo,trans,diag]) $\alpha \cdot x \times y^{T} + A \to A $a= pvger(alpha,x,y,a) $\alpha \cdot x \times y^{T} + A \to A $a= pvgeru(alpha,x,y,a) $\alpha \cdot x \times y^{H} + A \to A $a= pvgerc(alpha,x,y,a) $\alpha \cdot x \times x^{H} + A \to A$a= pvher(alpha,x,a,[uplo]) $\alpha \cdot x \times y^{H} + y(alpha \cdot x)^{H} + A \to A $a= pvher2(alpha,x,y,a,[uplo]) $\alpha \cdot x \times x^{T} + A \to A $a= pvsyr(alpha,x,a,[uplo='U']) $\alpha \cdot x \times y^{T} + y (\alpha \cdot x)^{T} + A \to A$a= pvsyr2(alpha,x,y,a,[uplo]) NIVEL 3 $\alpha \cdot op(A)\times op(B) + \beta \cdot C \to C $c= pvgemm(alpha,a,b,beta,c,[transa,transb]) $\alpha \cdot A\times B + \beta \cdot C \to C ; \alpha \cdot B\times A + \beta \cdot C \to $c=pvsymm(alpha,a,b,beta,c[,side,uplo]) $\alpha \cdot A\times B + \beta \cdot C \to C ; \alpha \cdot B\times A + \beta \cdot C \to C$c=pvhemm(alpha,a,b,beta,c[,side,uplo]) $\alpha \cdot A\times A^T + \beta \cdot C \to C ; \alpha \cdot A^T\times A + \beta \cdot C \to C $c=pvsyrk(alpha,a,beta,c[,uplo,trans]) $\alpha \cdot A\times A^H + \beta \cdot C \to C ; \alpha \cdot A^H\times A +\beta \cdot C \to C$c=pvherk(alpha,a,beta,c[,uplo,trans]) $\alpha \cdot A\times B^T + \alpha \cdot B\times A^T + beta \cdot C \to C$c=pvsyr2k(alpha,a,b,beta,c[,uplo,trans]) $\alpha \cdot A\times B^H + \alpha \cdot B\times A^H + beta \cdot C \to C$c=pvher2k(alpha,a,b,beta,c[,uplo,trans]) $\beta \cdot C+ \alpha \cdot A^T + \to C $c=pvtran(alpha,a,beta,c) $\beta \cdot C+ \alpha \cdot A^T + \to C $c=pvtranu(alpha,a,beta,c) $\beta \cdot C+ \alpha \cdot A^H + \to C$c=pvtranc(alpha,a,beta,c) $\alpha \cdot op(A)\times B \to B ; \alpha \cdot B \times op(A) \to B$b=pvtrmm(alpha,a,b[,side,uplo,transa,diagç]) $\alpha \cdot op(A^-1)\times B \to B ; \alpha B \cdot B \times op(A^-1) \to B$b=pvtrsm(alpha,a,b[,side,uplo,transa,diag])
Operación  Rutina 

See Sobre este documento... para sugerencias en cambios.